If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-8b-5=0
a = 8; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·8·(-5)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{14}}{2*8}=\frac{8-4\sqrt{14}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{14}}{2*8}=\frac{8+4\sqrt{14}}{16} $
| n/21+-380=-348 | | 9=2b−9 | | (3n)^2=0 | | 2a-71=a-26 | | 9^2+40^2=c^2 | | 9+2.77x=6.77x-3 | | o/5+3=21 | | -5(n-12)=7(n+3) | | s/5-19=5 | | -6.5n=52 | | 17s-15s=6 | | 2=n/9-1 | | 44=(3x+6) | | 10=c-15.5 | | 22x+3=23x-1 | | 2a^2+8a+5=0 | | 45=s/6+42 | | x2+3=27 | | 136=16b | | f/4-34=-27 | | 5/x-2=5/5 | | 12n^2+18n=0 | | 41=15+19+x | | x2-2085=124 | | 9x-88+11x-72=180 | | 2t-35=13 | | 1/2(29-b)=7.75 | | 8n+1=8n+1 | | -4x+9+5x=13x | | 9(k+3)=99 | | y–(-2)=54 | | 41=15+19=x |